MEASURE AND INTEGRATION THEORY BY S.KSAVAN

MEASURE AND INTEGRATION THEORY BY S.KSAVAN

In mathematical analysis, a measure on a set is a systematic way to assign a number to each suitable subset of that set, intuitively interpreted as its size. In this sense, a measure is a generalization of the concepts of length, area, and volume. A particularly important example is the Lebesgue measure on a Euclidean space, which assigns the conventional length, area, and volume of Euclidean geometry to suitable subsets of the n-dimensional Euclidean space Rn. For instance, the Lebesgue measure of the interval [0, 1] in the real numbers is its length in the everyday sense of the word, specifically,


Technically, a measure is a function that assigns a non-negative real number  to (certain) subsets of a set X (see Definition below). It must further be countably additive: the measure of a 'large' subset that can be decomposed into a finite (or countably infinite) number of 'smaller' disjoint subsets is equal to the sum of the measures of the "smaller" subsets. In general, if one wants to associate a consistent size to each subset of a given set while satisfying the other axioms of a measure, one only finds trivial examples like the counting measure. 

,................








Post a Comment

Previous Post Next Post